Sie sind auf der Suche nach einer Berufsausbildung, Sie wollen sich Qualifizieren oder Sie suchen eine neue, berufliche Herausforderung?
Dann sind Sie bei der ANTEC GmbH genau richtig.


 

Berufsausbildung

In unserer Lehrwerkstatt in Frankleben bilden wir Anlagenmechaniker(in) in der Fachrichtung Rohrsystemtechnik aus. Interessierst Du Dich für diesen Beruf, dann bist Du genau richtig bei uns.

 

 

Ort der Ausbildung:
ANTEC GmbH
(Ausbildungsstätte der IMO Merseburg)

Naumburger Str. 3
06259 Frankleben

 

Ausbildung/Qualifizierung
Herr Koch
Telefon
03461 44 33 98

 

Berufsausbildung Anlagenmechaniker(in) in Richtung Rohrsystemtechnik

Berufsausbildung
Anlagenmechaniker(in) in Richtung Rohrsystemtechnik

 

Die Ausbildung zum Anlagenmechaniker in Richtung Rohrsystemtechnik findet in unser eigenen Lehrlingsausbildungsstätte in Frankleben statt. Sie wird durch unsere geschulten und qualifizierten Ausbilder durchgeführt. Die Dauer beträgt 3 1/2 Jahre und endet mit der Prüfung durch die IHK Halle-Dessau.

 

Ausbildungsinhalte:

• Lesen, Zeichnen und Erstellen von technischen Unterlagen
• isometrische Skizzen von Rohrleitungen und Rohrformstücken anfertigen
• Herstellen von Schablonen
• technisches Zeichnen, Lesen & Erstellen von Isometrien sowie Erlernen von mathematischen Berechnungen und Symboldarstellungen
• Trennen und Umformen
• Erwerb von Kenntnissen und Fertigkeiten für Basislehrgänge E-, G- und WIG-Schweißen
• Hartlöten und Weichlöten von Stahl und Kupfer
• fakultativ mit Schweißerausbildung

Haben wir euer Interesse geweckt, dann freuen wir uns auf euere Bewerbung. Bitte sendet diese an folgende Adresse:

Firmensitz:
ANTEC GmbH
Rosa-Luxemburg-Straße 18
06217 Merseburg

 

Ausbildung:
ANTEC GmbH
(Ausbildungsstätte der IMO Merseburg)

Naumburger Str. 3
06259 Frankleben

 

Ausbildung/Qualifizierung
Herr Koch
Telefon
03461 44 33 98


Qualifizierung (Umschulung)

Wir bieten Ihnen eine Vielzahl von Qualifizierungen und Umschulungen.

In unserer Ausbildungsstätte in Frankleben werden die Qualifizierungen durch unsere kompetenten Ausbilder erfolgen. Die jeweiligen Prüfung bzw. Zertifizierungen werden durch den TÜV Nord und/oder der DVS (Deutscher Verband für Schweißen und verwandte Verfahren e. V.) durchgeführt und bescheinigt.

Viele unsere Qualifizierungen werden auch von der Agentur für Arbeit sowie dem Jobcenter gefördert und unterstützt.

 

Vorrichterfortbildung nach ISOMETRIE

 

– Weiterbildung / Fortbildung von Arbeitnehmern mit Vorkenntnissen von Tätigkeiten in der Metallbearbeitung

– wir verfügen über eine eigene Ausbildungswerkstatt in Frankleben mit praxisnahen Bedingungen in der Vorfertigung

– die Fortbildung erfolgt unter Leitung von erfahrenen Lehrausbildern

– flexible Unterrichtsgestaltung nach Wünschen der Kunden

– Ausbildungszeit bis zu 6 Monaten, je nach Vorkenntnissen

– Lesen, Anwenden und Erstellen von technischen Unterlagen

• Zeichnungen, insbesondere Rohrleitungspläne oder Kanalpläne, isometrische Darstellungen, Abwicklungen, Fundament- und Lagepläne, sowie Aufstellungspläne lesen und anwenden
• isometrische Skizzen von Rohrleitungen und Rohrformstücken anfertigen
• technische Sachverhalte aufzeichnen
• Herstellen von Schablonen
• As-built Unterlagen zeichnen
• Erlernen von mathematischen Berechnungen und Symboldarstellungen
• Trennen und Umformen (Trennen durch Brennschneiden, Warmumformung, Herstellung von Formstücken wie Rohrbögen und Aushalsungen)

Zertifikat für Fortbildung “Vorrichter nach ISO”

Grundlagen von E-, G- und WIG-Schweißen

TÜV-Prüfung möglich

 

Firmensitz:
ANTEC GmbH
Rosa-Luxemburg-Straße 18
06217 Merseburg

 

Ausbildung:
ANTEC GmbH
(Ausbildungsstätte der IMO Merseburg)

Naumburger Str. 3
06259 Frankleben

 

Ausbildung/Qualifizierung
Herr Koch
Telefon
03461 44 33 98

Schweißerausbildung bzw. –umschulung

 

– unsere Ausbildungsstätte befindet sich in Frankleben (bei Merseburg)

– hier erfolgt die Ausbildung unter Leitung von erfahrenen Schweißfachkräften

– Schweißerausbildung nach DVS- Richtlinie

– Schweißprüfungen werden generell durch Vertreter des TÜV Hannover/ Sachsen-Anhalt abgenommen

– 30 ständige Ausbildungsplätze für verschiedene Schweißverfahren

– die Qualifizierung umfasst folgende Schweißprozesse:
• 111 (E) Lichtbogenhandschweißen
• 135 (MAG) Metall-Aktivgasschweißen
• 136 (MAG) Metall-Aktivgasschweißen mit Fülldrahtelektrode
• 141 (WIG) Wolfram- Inertgasschweißen (Werkstoffgruppen: 1, 2, 5, 8)
• 311 (G) Gasschweißen mit Sauerstoff-Acetylen-Flamme

– Durchführung von Handfertigkeitstests

– stufenweise Ausbildung
• DVS- IIW / EWF- Kehlnahtschweißerprüfung
• DVS- IIW / EWF- Blechschweißerprüfung
• DVS- IIW / EWF- Rohrschweißerprüfung

– die Qualifizierungs-/Umschulungszeiträume liegen zwischen 3 bis 6 Monaten

 

Firmensitz:
ANTEC GmbH
Rosa-Luxemburg-Straße 18
06217 Merseburg

 

Ausbildung:
ANTEC GmbH
(Ausbildungsstätte der IMO Merseburg)

Naumburger Str. 3
06259 Frankleben

 

Ausbildung/Qualifizierung
Herr Koch
Telefon
03461 44 33 98

Weitere förderfähige Maßnahmen seit dem 01.07.2015

Fachkraft für Rohrleitungs- und Anlagenbau
• Vorrichter nach Isometrie
• Verschraubungsmonteur nach DIN 1591-4
• SCC Dokument 016/17/18
• Anschlagen von Lasten

Verschraubungsmonteur nach DIN 1591-4
• in unternehmenseigener Ausbildungswerkstätte
• TÜV Prüfung
• Dauer bis zu 2 Wochen (je nach Vorkenntnissen)

Ausbildung für Flurförderfahrzeuge
• Gabelstaplerfahrer
• Hubarbeitsbühnenführer
• Dauer je 1 Woche

sonstige Seminare
• SCC gemäß Dokument 016/017/018
• Anschlagen von Lasten
• Dauer je 1 Woche

 

Allgemeiner Bildungskatalog

Schauen Sie sich unser umfangreiches Angebot für die jeweiligen Qualifizierungen in Ruhe an, es ist bestimmt das passende für Sie mit dabei.

 

Übersicht Schweißverfahren

Unter Schweißen versteht man ‘das unlösbare Verbinden von Bauteilen unter Anwendung von Wärme oder Druck, mit oder ohne Schweißzusatzsoften’.

Von allen Verfahren ist das Schmelzschweißen das bekannteste, wobei die zu verbindenden Werkstoffe bis zu deren Verflüssigung erhitzt werden und sich vermischen, so dass sie nach dem Erstarren fest miteinander verbunden sind.

Geschichte der Schweißtechnik

Geschichte der Schweißtechnik

Seit Menschen versuchten, metallische Gegenstände herzustellen, standen sie vor der Aufgabe, geeignete Verfahren einzusetzen. Die Geschichte des Schweißens beschreibt den langen Weg von den Anfängen bis zu den heute handwerklich und industriell genutzten Schweißverfahren für das Verbinden von Metallen, Gläsern, Kunststoffen unterschiedlichster Abmessungen.
Er begann bei den Sumerern und Hethitern im 3. Jahrtausend v. Chr. Die Entwicklung machte über Jahrtausende nur geringe Fortschritte, um mit den Erfindungen des 19. Jahrhunderts eine rasante Beschleunigung zu erfahren.

Das Feuer- und Hammerschweißen von Eisen wurde seit dem 15. Jahrhundert n. Chr. in Kleinasien ausgeübt. Das waren die Verfahren, die auch noch in den nächsten Jahrhunderten zum Fügen von metallischen Werkstoffen zur Verfügung standen. Ausschließlich durch Feuerschweißen konnten von der Eisenzeit bis ins 20. Jahrhundert durch die Schmiede neben z. B. Werkzeugen, landwirtschaftlichen Geräten und Gittern auch Waffen geschweißt (und im Anschluss verschmiedet) werden, wie Dolche und Schwerter aus Damaszener Stahl. Auch der elementare Prozess des Ausschmiedens des Eisenschwamms (Luppen) und darauffolgendem Gärben (Reinigen des Eisens) konnte nur durch mehrfaches Falten und anschließendes Feuerschweißen durchgeführt werden.
Das deutsche Wort “Schweißen” kommt vom althochdeutschen sueizan (= “heiß machen”, “erhitzen”) und ist die Entsprechung des altnordischen Wortes sviða. Es wurde zwischen 800 und 1000 n. Chr. von den Schmieden gebraucht. Sicherlich kommt auch das russische Wort cbápka (svarka; dt. Schweißen) aus der gleichen Quelle.

Die Entdeckung des Acetylens 1836 durch Edmund Davy und die Luftverflüssigung 1895 durch Carl von Linde ermöglichte das Schmelzschweißen durch eine energiereiche Flamme im Zusammenwirken mit Sauerstoff. Henry Le Chatelier wies experimentell nach, dass mit einer Sauerstoff-Acetylen-Flamme Temperaturen über 3000 °C erreicht werden können, ca. 500 °C mehr als mit einer Wasserstoff-Sauerstoff-Flamme. Als der Schweißbrenner für die Sauerstoff-Acetylen-Flamme durch Charles Picard und Edmond Fouché erfunden war, begann die Zeit des Gasschmelzschweißens, zunächst Autogenschweißen genannt.

Schweißen mit Stabelektroden

Nach der Entdeckung des elektrischen Lichtbogens und der industriellen Erzeugung von elektrischem Strom wird das Schmelzschweißen mit dem Lichtbogen möglich. Nikolai Nikolajewitsch Benardos und Stanis?aw Olszewski nutzten den Lichtbogen zwischen zwei Kohleelektroden.
Nikolai Gawrilowitsch Slawjanow ersetzte 1891 die bis dahin zum Lichtbogenschweißen üblichen Kohleelektroden durch einen Metallstab, der gleichzeitig Lichtbogenträger und Schweißzusatz war. Da die ersten Stabelektroden nicht umhüllt waren, war die Schweißstelle nicht vor Oxidation geschützt. Deshalb waren diese Elektroden schwierig zu verschweißen.
Oscar Kjellberg hatte 1907 die Idee, die metallischen Stabelektroden mit einer Umhüllung zu versehen, die dazu diente, die Lichtbogeneigenschaften zu verbessern und das Schweißbad vor Oxidation durch Luftsauerstoff zu schützen. Es folgten Entwicklungen verschiedenster Elektrodenumhüllungen für die Verbesserung der Lichtbogenstabilität und der metallurgischen Eigenschaften des Schweißgutes. Das Lichtbogenhandschweißen mit umhüllten Stabelektroden wurde zum Standardschweißverfahren.

WIG-Schweißen

Auf der Suche nach einem Schweißverfahren für das Verbinden des leicht entzündlichen Magnesiums und seiner Legierungen erfand Russel Meredith von Northrop Aircraft ein Schweißverfahren mit einer Wolframelektrode und dem Schutzgas Helium. Er nannte das Verfahren Heliarc. Wegen der Bezeichnung Wolfram für das Elektrodenmaterial und der Nutzung eines inerten Gases wurde es WIG-Schweißen (Wolfram-Inertgas-Schweißen) genannt. Der offizielle englische Begriff ist Gas Tungsten Arc Welding (GTAW) nach der American Welding Society (AWS). In der Folgezeit wurden viele Verbesserungen am Brenner (Wasserkühlung, Schutzgasdüsen) und an der Zusammensetzung der Elektroden vorgenommen und es wurden die Stromquellen weiterentwickelt. Besonders die Überlagerung der Schweißspannung mit einer sogenannten Hochfrequenzspannung war ein wichtiger Schritt, um Aluminium mit Wechselstrom zu schweißen.

Metallschutzgasschweißen

Entwicklung des Schweißprozesses
1935 wurde unter den Titel Improvements in Electric Arc Welding ein Patent in Großbritannien angemeldet, in dem die Zufuhr einer Drahtelektrode von einer Spule durch einen Vorschubmotor beschrieben wird. Das ist die Voraussetzung für das Metallschutzgasschweißen, das erstmals 1948 in den USA angewendet wurde und Perry J. Rieppel als Patent anmeldete. In dem Patent werden als Schutzgase sowohl die Inertgase Argon und Helium genannt als auch Kohlenmonoxid und Kohlendioxid. Rieppel nennt das Verfahren Shielded Arc Welding, die Variante mit inerten Gasen wurde später auch als SIGMA-Schweißen (engl. shielded inert gas metal arc) bezeichnet. Die Nachteile der aktiven Gase, wie die toxische Wirkung und Entflammbarkeit von CO als auch Abbrand von Legierungselementen im Werkstoff werden im Patent nicht angesprochen.
Die sowjetischen Ingenieure K.V. Liubavskii und N.M. Novozhilov untersuchten in den frühen 1950er Jahren eingehend die metallurgischen Reaktionen beim Schweißen unter CO2-Schutz. Das führte zur Entwicklung spezieller Drähte mit entsprechenden Legierungseigenschaften, die den Abbrand ausglichen. Das machte das sogenannte CO2- oder MAG-Schweißen (Metall-Aktivgas-Schweißen) mit ausreichender Qualität möglich.
Die Entwicklung spezieller Stromquellen mit Anpassungen an die Erfordernisse des MIG-/MAG-Schweißen folgten. Mit dem Aufkommen elektronisch gesteuerter Stromquellen ergab sich die Möglichkeit, den Abschmelzprozess gezielt zu steuern. Diese Entwicklungen hatten das Ziel, den Werkstoffübergang durch Stromimpulse zu steuern, den Wärmeeintrag in das Werkstück möglichst gering zu halten oder die Abschmelzleistung und damit die Produktivität zu erhöhen.

Impulsschweißung
Der Werkstoffübergang beim traditionellen MIG/MAG-Schweißen mit dem Kurzlichtbogen war ungleichmäßig. Um die Ablösung des geschmolzenen Tropfens vom zugeführten Draht gezielt steuern zu können, wurde die sogenannte Impulsschweißung eingeführt. Durch ständig wiederholende Stromimpulse sollte gewährleistet werden, dass sich mit jeder Stromerhöhung ein Tropfen ablöst. Zu Beginn dieser Technologie wurde noch mit zwei Stromquellen gearbeitet, später übernahm eine steuerbare Stromquelle diese Aufgabe.

Reduzierung des Energieeintrags
In Österreich wurde bis 2005 das CMT-Schweißen (cold metal transfer) serientauglich entwickelt, bei dem der Schweißstrom gepulst wird und Zusatzdraht mit hoher Frequenz vor und zurück bewegt wird, um eine gezielte Tropfenablösung bei geringer Wärmeeinbringung zu erreichen.
Das gleiche Ziel der Reduzierung des Wärmeeintrags wird durch das sogenannte ColdArc-Verfahren erreicht, das ebenfalls im Jahre 2005 auf den Markt gebracht wurde. Alle Prozesseingriffe wirken direkt von der Stromquelle bei konstantem Drahtvorschub und mit Nutzung gewöhnlicher Schweißbrenner.

Erhöhung der Abschmelzleistung
Von J. G. Church und H. Imaizumi wurde untersucht, inwieweit sich die Abschmelzleistung des Schutzgasschweißens mit abschmelzendem Draht ohne Qualitätsverlust dadurch erhöhen lässt, dass man spezielle Gasgemische einsetzt. Auf der Basis ihrer Ergebnisse wurde der T.I.M.E.-Prozess (Transferred Ionized Molten Energy) und die daraus abgeleiteten Varianten entwickelt.

Engspaltschweißen
Durch den Einsatz unterschiedlicher Ausrüstungskomponenten können die Schweißverfahren optimiert an die jeweiligen Aufgaben angepasst werden. Will man zum Beispiel besonders dicke Bleche schweißen, ist hierfür in der Regel eine aufwendige Nahtvorbereitung in Form einer V-Fuge erforderlich. Mit Hilfe der Engspalttechnik kann der Aufwand für die Nahtvorbereitung erheblich reduziert werden. So können Bleche bis zu 300 mm Stärke bei mit nahezu parallelen Flanken geschweißt werden. Durch den stark reduzierten Öffnungswinkel entfällt zum einen aufwendige Nahtvorbereitung, zum anderen können Zusatzwerkstoff und Schutzgasmenge reduziert werden. Außerdem sind wesentlich weniger Schweißraupen erforderlich, was zusätzlich die Schweißzeit verringert. Dadurch wird das Bauteil weniger Wärme ausgesetzt und der Verzug minimal gehalten. Das rotierende Kontaktrohr erlaubt es, sowohl pendelnde Schweißlagen als auch Strichraupen zu schweißen. Das Engspalt-Schwert wird über den Lichtbogensensor in der Mitte der Fuge geführt. Das bis an die Gasdüse wassergekühlte Schwert erlaubt ununterbrochene Schweißzeiten über mehrere Stunden.

Lichtbogenbolzenschweißen

Erste Versuche wurden bereits 1915 bis 1918 von Harold Martin in England durchgeführt und 1920 zum Patent angemeldet. Entsprechen der Erfindungsbeschreibung wird ein elektrischer Lichtbogen zwischen einer Metallplatte und einem Bolzen gezündet. Dieser wird über eine einstellbare Zeit gehalten. Am Ende des Prozesses wird der Bolzen durch mechanische, pneumatische oder elektrische Kraft in die Schmelze getaucht.
In den frühen 1940er Jahren hatte ein Schweißer namens Ted Nelson die Idee, Schraubverbindungen zur Befestigung von Holzplanken an Stahlplatten zu vereinfachen. Er ersetzte das bisher übliche Kehlnahtschweißen dadurch, dass er den Gewindebolzen direkt durch einen Lichtbogen aufschmelzen ließ und ihn durch eine Vorrichtung in das Schmelzbad eintauchte. Um den Bolzen mit konstanter Geschwindigkeit zur Lichtbogenzündung anzuheben und eine konstante Lichtbogenlänge zu gewährleisten entwickelte er eine Vorrichtung mit geeignetem Spannfutter und einem Elektromagneten zum Anheben des Bolzens. Über einen Zeitgeber wurde die Schweißzeit eingestellt.
1970 wurde im technischen Ausschuss des Deutschen Verbands für Schweißtechnik e. V. die Arbeitsgruppe “Bolzenschweißen” gegründet.

Schweißen mit magnetisch bewegtem Lichtbogen

1942 wurde durch J. W. DAWSON in den USA ein Patent angemeldet, das das Prinzip des Stumpfschweißens mit einem im radialen Magnetfeld rotierenden Lichtbogen als Wärmequelle beschreibt. Das Verfahren wurde in den 1950er und 1960er Jahren besonders in der Sowjetunion, in den 1970er Jahren auch in Deutschland industriell entwickelt und genutzt. Statt des Stumpfschweißens mittels eines rotierenden Lichtbogens kam das Schmelzschweißen mit einer ringförmigen Hilfselektrode zum Einsatz.
Heute wird es als MBP-Schweißen (Pressschweißen mit magnetisch bewegtem Lichtbogen) bezeichnet.

1766 berichtet J. Beckmann über einen Versuch von Johan Carl Wilcke, durch Kondensatorenentladung Flintkugeln miteinander zu verschweißen, und schon 1782 schweißte Georg Christoph Lichtenberg mittels der “künstlichen Elektrizität” eine Uhrfeder mit einer Messerklinge zusammen.
Das Widerstandsschweißen wurde 1857 von James Prescott Joule als mögliches Verfahren zum Verbinden von Metallen aufgezeigt. Die entscheidenden Versuche zur Erfindung des Widerstandsschweißens unternahm Elihu Thomson um 1877. Er meldete 1886 zwei Patente zum Stumpfschweißen von Metalldrähten an.
Um 1897 setzte Henry F. A. Kleinsschmidt zum Widerstandsschweißen Kupferelektroden ein. Damit begann der industrielle Durchbruch des Widerstandsschweißens. Er hatte auch schon die Idee, Schweißbuckel beim Widerstandsschweißen von Laschen an Schienen zu verwenden. Um 1910 wurden die Widerstandsbuckel- und -rollennahtschweißmethode entwickelt. Ab 1930 setzte sich das Widerstandsschweißen auch industriell in großem Umfang durch. So wurden z. B. die Innenaufbauten von Elektronenröhren (Halterungen und Anschlüsse der Elektroden und der Kathodenheizung) punktgeschweißt – das Löten kommt hierbei aufgrund des Ausgasens von Flussmittelresten nicht in Frage.

Arten von Schweißverfahren. Die wichtigsten Verfahren für die ANTEC GmbH findest du hier.

Arten von Schweißverfahren

Schweißen ist nicht gleich Schweißen.
Die nötige Schweißenergie wird von außen zugeführt. Schweiß Hilfs Stoffe, wie Schutzgase, Schweißpulver oder Pasten, können das Schweißen erleichtern oder auch erst möglich machen.
Schweißen kann durch Wärmezufuhr bis zum Schmelzen des Werkstoffs oder durch Wärmezufuhr und zusätzliche Krafteinwirkung (Druck) auf das Werkstück erfolgen.

 

Bezeichnung:
auch Autogen Schweißen
Einsatzbereich:
Chemieanlagenbau Installationstechnik (Sanitär)
Material:
un- und niedriglegierte Stähle

 


Bezeichnung:
E-Hand Schweißen oder auch Elektro-Schweißen
Einsatzbereich:
Stahlbau, Rohrleitungsbau
Material:
alle Stähle

 


Bezeichnung:
MAG Metall aktiv Gas Schweißen oder auch MSG Metall Schutzgas Schweißen (Massivdraht 135 / Fülldraht 136)
Einsatzbereich:
Schiffsbau, Brückenbau, Kfz- und Industriebranche
Material:
un-, niedrig- und hochlegierte Stähle

 


Bezeichnung:
MSG Metall Schutzgas Schweißen (ebenfalls MSG)
Einsatzbereich:
Fahrzeug- und Apparatebau
Material:
alle Nichteisen Metalle (NE-Metalle) z. Bsp. Aluminium, Kupfer

 


Bezeichnung:
Wolfram Inertgas Schweißen
Einsatzbereich:
Luftfahrt, Chemieanlagen, Apparate-, Anlagen- und Rohrleitungsbau
Material:
un-, niedrig- und hochlegierte Stähle, alle NE-Metalle